
1 of 13

 Table of Contents

 1. Architecture

 1.1 Process Manager

 1.2 Process Definition Manager

 1.3 Persistence Manager

 1.4 Audit Manager

 1.5 JaWS

 1.6 Trigger Manager

 1.7 Security Connector

 1.8 Utility Activities

 2. Configuring

 2.1 Database

 2.2 Configuring Datasources

 2.3 Configuring JMS Datasources

 3. Running

 3.1 Checking installation

 3.2 Web User Interface

 3.3 Loading a Process Definition

 3.4 Starting a Process

 3.5 Operating on a Process Instance

 3.5.1 Changing Process Instance Status

 3.5.2 Process Instance History

 3.5.3 Process Graph

 3.6 Operating on Activities

 3.6.1 Changing Activity Instance Status

 3.6.2 Activity Instance History

 3.7 Searching Processes

 4. Activities

 4.1 Java Activities

 4.2 Input and Output Context

 4.3 Configuration

 5. The net.arsretia.jawflow.util Package

 5.1 Dos2UnixActivity

 5.2 Unix2DosActivity

 5.3 ExternalCommandActivity

 5.4 FileCopyActivity

 5.5 MailActivity

 5.6 MainWrapperActivity

 5.7 MoveFileActivity

 5.8 RegexpReplacerActivity

 5.9 ScriptActivity

 5.10 ZipActivity

 5.11 UnzipActivity

 6. Triggers

 6.1 TriggerManager

 6.2 MailTrigger

 6.3 FileTrigger

 6.4 FTPTrigger

 6.5 TimeTrigger

 1. Architecture

JawFlow is composed by many interacting modules. Many of these modules are JMX Mbeans and so they need a JMX Agent to run. To

develop, test and run JawFlow we used Jboss AS (www.jboss.org) but since there are no dependencies in the code related to Jboss it can be

installed in any application server supporting the JMX technology. We only support here Jboss AS and a detailed installation and

configuration procedure is reported in chapter 2

 1.1 Process Manager

 About

 License

 FAQ

 Documentation

 HTML (single)
 HTML (chapters)

 Download

 Contacts

2 of 13

The ProcessManager is the kernel of JawFlow. It is responsible of process scheduling and enqueueing. It enquires the JaWS module to

follow the work path in order to respect the flow depicted in the process definitions.

 1.2 Process Definition Manager

The Process Manager uses the Process Definition Manager in order to store, retrieve and delete the process definitions. The process

definitions are written in XPDL, the XML Process Definition Language, a standard language proposed by the WfMC coalition. The process

definition Manager acts in two ways: the first as a persistence manager for process definitions, the second as a cache manager to avoid the

process of loading process definition from the persistence repository. The process definition manager can be plugged into JawFlow

respecting some Mbean interfaces. The actual implementation uses Hibernate as a persistence mechanism and a JNDI serialization as a

cache manager.

 1.3 Persistence Manager

The persistence Manager is in charge of storing and retrieving the Flow status and any change that occurs to it. It stores any information

declared as "Extended Attribute" in the Workflow.

 1.4 Audit Manager

The Audit Manager is notified of any change that occurs to the status of the activities and of the processes. It is implemented in an

asynchronous way using a JMS Queue and a MDB that receives notifications and stores data. The actual implementation of the storage has

been done using Hibernate a llowing fast coding of the workflow structure db operations. The Audit Manager is implemented using a chain of

delegation pattern, allowing to extend its behaviour by registering other listeners for the change of status notifications.

 1.5 JaWS

The Java Workflow System is just a decision engine which, invoked by the ProcessManager, controls the path of the workflow. It is able to

recognized decisional structure defined by the WfMC as splits and joins.

 1.6 Trigger Manager

It is possible to register a number of "triggers" that, at the occurrence of particular events, can instance a defined process and have it started.

The Trigger Manager component controls the triggering subsystem and runs the monitors. Four types of trigger are present in Jawflow:

File Trigger Monitors a directory and its subdirs for any file copied into it

Mail Trigger Monitors a mailbox for e-mails arriving respecting required conditions

Time Trigger It is a sort of "cron" scheduler able to start processes at defined time conditions

FTP Trigger Similar to the File trigger but acts remotely

It is so possible, for instance, to start a particular process when a file is copied into a defined directory or when a mail arrives in a defined

mailbox.

 1.7 Security Connector

It provides a secure mechanism of talking in a stateless way with the jawflow server. A Standard connector has been written for Jboss but

since the methods used are all exposed by the underlying Mbeans it is possible to write your own connector.

 1.8 Utility Activities

A number of utility Java activities have been included in the jawflow distributions. For a complete list, please refer to the related

documentation.

 2. Configuring

jawFlow is provided in bundle with jboss-4.0.4GA Application Server. The distribution should run with a minimum configuration work.

 2.1 Database

Jawflow needs a database in order to store process definitions and process status. The database is created via the script jawflow.sql

provided with the distribution.

 2.2 Configuring Datasources

The jawflow DataSource is defined in the file

server/default/jawflow.deploy/jawflow-ds.xml

and it should be configured pointing to the database created in the previous step.

 <datasources>

 <local-tx-datasource>

 <jndi-name>jawflowDS</jndi-name>

 <connection-url>...jdbc url...</connection-url>

 <driver-class>...jdbc driver...</driver-class>

 <user-name>...username...</user-name>

 <password>...password...</password>

 <min-pool-size>5</min-pool-size>

 <max-pool-size>20</max-pool-size>

 <idle-timeout-minutes>0</idle-timeout-minutes>

 <track-statements/>

 </local-tx-datasource>

 </datasources>

The parameters in the previous file are:

jdbc url The JDBC URL of your DB (e.g.: jdbc:postgresql://server/jawflow)

jdbc driver The name of the class implementing the jdbc Driver (e.g.:org.postgresql.Driver)

username a valid username to connect to the database with read/write access

password the user's password

You can of course configure the pooling parameters according to your specific needs.

 2.3 Configuring JMS Datasources

3 of 13

jawFlow uses JMS for asynchronous state saving hence it needs a working JMS storage. The default distributions uses a Postgres

configured Datasource for the jms Queue but you can use whatever persistent jms mechanism provided by jboss. The provided datasource is

in file

server/default/deploy/postgres-ds.xml

and its configuration is similar to the one described previously for the main jawFlow DS. You can of course use the same database for both

jawFlow and JMS queue

 3. Running

To run jawFlow, just start jboss with the run.sh or run.bat script.

 3.1 Checking installation

Once JBoss has started you can check if jawFlow has been started properly too. In order to do this control on the JMX Console:

http://localhost:8080/jmx-console/

if the following JMX Beans have been registered:

 arsretia.jawflow

 * service=AuditMessageProducer

 * service=DataPersistenceManager

 * service=DataPersister

 * service=DefinitionsStorageManager

 * service=GroupManager

 * service=JNDIStorageManager

 * service=MasterClock

 * service=MonitorMgr

 * service=PersistenceManager

 * service=ProcessCleaner

 * service=ProcessDefinitionRepository

 * service=ProcessManager

 * service=RMIConnectorServer

 * service=SecurityConnector

 * service=TriggerManager

 3.2 Web User Interface

If everything's ok now, you can access jawFlow's console at the url:

http://localhost:8080/jawflow/Jawflow/home.jsp

and you can reach the logon mask

The default user to access the console is:

user: admin

password: jawflow

It is strongly suggested to change the password on the db

 3.3 Loading a Process definition

The main jawFlow console is empty at the beginning because we haven't any process definition stored in the database. We can load our

XPDL files by clicking on the button circled in red in the following Picture

In the following screen, choose your XPDL file clicking on the Browse button and upload your definition with the submit button.

4 of 13

The new definition should appear in the top list.

At its right you have the operational button to Start a new Process Instance and to Remove the Definition

 3.4 Starting a Process Instance

To start a New Process Instance, click on the start button. You are presented a start form with the Workflow Relevant Data. Every data

defined as a workflow relevant data is presented here and you can change the ones you need.

The only mandatory field is the "domain" which represents the JMX domain of your process instance. You can enter a string here, for

instance "mydomain", then click on the "start" button.

5 of 13

 3.5 Operating on a Process Instance

 3.5.1 Changing process status

By clicking on the "Modify" button you can change the status of a process instance to a different one

The allowed statuses are the ones defined by the WfMC.

 3.5.2 Process Instance History

You can have a look at the process history and at the process internal status.

 3.5.3 Process Graph

You can have a look at the process graph.

6 of 13

 3.6 Operating on an Activity Instance

 3.6.1 Changing Activity Instance status

By clicking on the "Modify" button you can change the status of an activity instance to a different one

The allowed statuses are the ones defined by the WfMC.

 3.6.2 Activity Instance History

You can have a look at the activity history.

7 of 13

 3.7 Searching Processes

The search utility provides you a way to searc and look at completed processes no more present in the process runtime list (the process

runtime list is cleaned of completed processes every now and then)

You can search by:

Process status

Process domain

Process definition id

Process start and end dates.

The process list you have as a result permits you to have a look at the process history and status and at the process graph.

 4. Activities

JawFlow allows you to write activities that are automatically executed by the system. These activities can be written in Java or in a scripting

language supported by BSF (using the ScriptActivity)

 4.1 Java Activities

The Java Activities can be classes that must implement:

 net.arsretia.jawflow.kernel.processmgr.IRunnableActivity

defined as

 public

 interface IRunnableActivity extends Serializable

 {

 public

 int doWork(InputContext oInput,OutputContext oOutput);

 public

 void forceQuit();

 public

8 of 13

 void gracefulStop();

 }

The doWork method must return one of the following statuses defined in

 net.arsretia.jawflow.objectmodel.IStates

 public static final int iACTIVITY_CLOSED = 0x00F0;

 public static final int iACTIVITY_CLOSED_ABORTED = 0x0020;

 public static final int iACTIVITY_CLOSED_TERMINATED = 0x0040;

 public static final int iACTIVITY_CLOSED_COMPLETED = 0x0080;

depending on the end activity status The forceQuit method must stop the activity immediately.

The gracefulStop method can shutdown cleanly the activity.

A typical doWork method can be:

 public

 int doWork(InputContext oInput,OutputContext oOutput);

 while(boRunning){

 // do some important stuff here

 }

 if(boForcedQuit){

 return IStates.iACTIVITY_CLOSED_TERMINATED;

 }

 if(boCleanShutdown){

 return IStates.iACTIVITY_CLOSED_COMPLETED;

 }

 return IStates.iACTIVITY_CLOSED_COMPLETED;

 }

 4.2 Input and Output Context

The doWork method parameters are of the type InputContext and OutputContext In the InputContext there is every parameter declared as

 <ExtendedAttribute Name="InputVariable" Value="..."/>

in the xpdl referring to Workflow Data and every other ExtendedAttribute Since an ExtendedAttribute can refer one or many parameters with

the same name the method getAttribute of InputContext always returns a

java.util.List

It is responsability of the programmer to fetch the first (and only) attribute in case there is only one.

e.g.:

 String myVar = (String)((List)oInput.getAttribute("MyVAR")).get(0)

The OutputContext allows to set the value of variables declared in the xpdl as

 <ExtendedAttribute Name="OutputVariable" Value="..."/>

If you try to set a variable not declared as OutputAttribute you get an InvalidAttributeException

It is possible, for user defined variables, to refer to a workflow variable with the prefix $

e.g.:

<ExtendedAttribute Name="MyVar" Value="$Var1/$Var2"/>

 4.2 Input and Output Context

The automatic activity is declared in the XPDL with an ExtendedAttribute in the following way:

 ...

 <ExtendedAttributes>

 <ExtendedAttribute Name="java.class.name" Value="<classname>"/>

 <ExtendedAttribute Name="activity.class.path" Value="<classpath>"/>

 ...

 </ExtendedAttributes>

 ...

where

<classname> is the name of the class implementing net.arsretia.jawflow.kernel.processmgr.IRunnableActivity

<classpath> is the classpath where the class can be found

 5. The net.arsretia.jawflow.util Package

In the net.arsretia.jawflow.util package there are many activites ready to be used

 5.1 Dos2UnixActivity

This activity converts a DOS file in a UNIX File (CRLF -> CR conversion)

 <ExtendedAttribute Name="DosFile" Value="<dosfile>"/>

 <ExtendedAttribute Name="DosFileDir" Value="<dosfiledir>"/>

 <ExtendedAttribute Name="UnixFileOutDir" Value="<unixfileoutdir>"/>

 <ExtendedAttribute Name="DosFileSuffix" Value="<dosfilesuffix>"/>

9 of 13

 <ExtendedAttribute Name="UnixFileSuffix" Value="<unixfilesuffix>"/>

 <ExtendedAttribute Name="errorVariable" Value="<errorVariable>"/>

 <ExtendedAttribute Name="errorValue" Value="<errorValue>"/>

 Var Description Mandatory

 dosfile Name of the dos file (without suffix)

 dosfiledir Directory where the dos file is

 unixfileoutdir Directory in cui scrivere il file unix

 dosfilesuffix Dos file Extension

 unixfilesuffix Unix File Extension (default=".unix")

 errorVariable Name of the error variable to be set in case of error

 errorValue Value of the error Variable in case of error

 5.2 Unix2DosActivity

This Activity converts an UNIX file to a DOS one (CR -> CRLF)

 <ExtendedAttribute Name="UnixFile" Value="<unixfile>"/>

 <ExtendedAttribute Name="UnixFileDir" Value="<unixfiledir>"/>

 <ExtendedAttribute Name="DosFileOutDir" Value="<dosfileoutdir>"/>

 <ExtendedAttribute Name="DosFileSuffix" Value="<dosfilesuffix>"/>

 <ExtendedAttribute Name="UnixFileSuffix" Value="<unixfilesuffix>"/>

 <ExtendedAttribute Name="errorVariable" Value="<errorVariable>"/>

 <ExtendedAttribute Name="errorValue" Value="<errorValue>"/>

 Var Description Mandatory

 unixfile Unix file name (no suffix)

 unixfiledir Unix file dir

 dosfileoutdir DOS File dir

 dosfilesuffix Dos File Suffix

 unixfilesuffix Unix File Suffix (default=.unix)

 errorVariable Name of the error variable to be set in case of error

 errorValue Valore della variabile di errore in caso di errore

 5.3 ExternalCommandActivity

This activity executes an external command

 <ExtendedAttribute Name="command" Value="<command>"/>

 <ExtendedAttribute Name="errorVariable" Value="<errorVariable>"/>

 <ExtendedAttribute Name="errorValue" Value="<errorValue>"/>

 Var Description Mandatory

 command Complete Command

 errorVariable Name of the error variable to be set in case of error

 errorValue Valore della variabile di errore in caso di errore

 5.4 FileCopyActivity

File copy

 <ExtendedAttribute Name="OriginalFile" Value="<originalfile>"/>

 <ExtendedAttribute Name="OriginalFileDir" Value="<originalfiledir>"/>

 <ExtendedAttribute Name="OriginalFileSuffix" Value="<origfilesuffix>"/>

 <ExtendedAttribute Name="CopiedFile" Value="<copiedfile>"/>

 <ExtendedAttribute Name="CopiedFileDir" Value="<copiedfiledir>"/>

 <ExtendedAttribute Name="CopiedFileSuffix" Value="<copiedfilesuffix>"/>

 <ExtendedAttribute Name="NameChanges" Value="<namechanges>"/>

 <ExtendedAttribute Name="errorVariable" Value="<errorVariable>"/>

 <ExtendedAttribute Name="errorValue" Value="<errorValue>"/>

 Var Description Mandatory

 originalfile Name of the original file (without suffix)

 originalfiledir Directory where the file is

 originalfilesuffix Original file suffix

 CopiedFile Copied file name

 CopiedFileDir Copied file dir

 CopiedFileSuffix Copied file Suffix

 NameChanges

Can be:

LeaveAsItIs no changes

ToUpperCase copied file name is uppercase

ToLowerCase copied file name is lowercase

 errorVariable Name of the error variable to be set in case of error

 errorValue Valore della variabile di errore in caso di errore

10 of 13

 5.5 MailActivity

Sends an email

 <ExtendedAttribute Name="address" Value="<address>"/>

 <ExtendedAttribute Name="text" Value="<text>"/>

 <ExtendedAttribute Name="smtp" Value="<smtp>"/>

 <ExtendedAttribute Name="from" Value="<from>"/>

 <ExtendedAttribute Name="subject" Value="<subject>"/>

 <ExtendedAttribute Name="attachment" Value="<attachment>"/>

 Var Description Mandatory

 Address Address (many addresses can be inserted)

 Smtp SMTP Server

 From From address

 Text Text. If the variable is prepended by a '@' is the url of a valid file containing the text

 Subject Subject

 Attachment Attachment file url (many attachments can be inserted)

In the text and the subject it is possible to use the variable substitution using the $ prefix.

 5.6 MainWrapperActivity

This activity executes a java class with the method:

public static void main(String argv[])

 <ExtendedAttribute Name="runnable.class" Value="<class>"/>

 <ExtendedAttribute Name="runnable.class.path" Value="<classpath>"/>

 <ExtendedAttribute Name="runnable.param" Value="<param>"/>

 <ExtendedAttribute Name="errorVariable" Value="<errorvar>"/>

 <ExtendedAttribute Name="errorValue" Value="<errorval>"/>

 Var Description Mandatory

Class Class Name

Classpath Execution Classpath

Param Main class parameters (many parameters can be inserted)

Errorvar Name of the variable to be set in case of errors

Errorval Value of the variable to be set in case of errors

 5.7 MoveFileActivity

This activity moves a file. It can be configured in the same way as the FileCopyActivity.

 5.8 RegexpReplacerActivity

This activity performs a regular expression substitution in a given file

 <ExtendedAttribute Name="OriginalFile" Value="<originalfile>"/>

 <ExtendedAttribute Name="OriginalFileDir" Value="<originalfiledir>"/>

 <ExtendedAttribute Name="OriginalFileSuffix" Value="<origfilesuffix>"/>

 <ExtendedAttribute Name="ReplacedFile" Value="<repfile>"/>

 <ExtendedAttribute Name="ReplacedFileDir" Value="<repfiledir>"/>

 <ExtendedAttribute Name="ReplacedFileSuffix" Value="<repfilesuffix>"/>

 <ExtendedAttribute Name="RemoveEmptyLines" Value="<removeemptylines>"/>

 <ExtendedAttribute Name="Regexp" Value="<regexp>"/>

 <ExtendedAttribute Name="Replacestring" Value="<rreplacestring>"/>

 <ExtendedAttribute Name="errorVariable" Value="<errorvar>"/>

 <ExtendedAttribute Name="errorValue" Value="<errorval>"/>

 Var Description Mandatory

originalfile Original File Name (without suffix)

originalfiledir Original File Dir

Originalfilesuffix Original File suffix

ReplacedFile Substituted file name

ReplacedFileDir Substituted file dir

ReplacedFileSuffix Substituted file suffix

RemoveEmptyLines It it is true, empty lines are removed

Regexp Regular expression

ReplaceString String to be inserted

Errorvar Name of the variable to be set in case of errors

Errorval Value of the variable to be set in case of errors

 5.9 ScriptActivity

This activity executes a script writtine in a language supported by BSF. The Script MUST return one of the codes before mentioned for the

Java Activity

 <ExtendedAttribute Name="language" Value="<language>"/>

11 of 13

 <ExtendedAttribute Name="script" Value="<script>"/>

 Var Description Mandatory

Language Language

Script File containing the script

 5.10 UnzipActivity

This Activity unzips a file

 <ExtendedAttribute Name="ZipInputFile" Value="<zipinputfile>"/>

 <ExtendedAttribute Name="ZipInputFileDir" Value="<zipinputfiledir>"/>

 <ExtendedAttribute Name="ExtractDir" Value="<extractdir>"/>

 <ExtendedAttribute Name="PreserveTree" Value="<preservetree>"/>

 <ExtendedAttribute Name="errorVariable" Value="<errorVariable>"/>

 <ExtendedAttribute Name="errorValue" Value="<errorValue>"/>

 Var Description Mandatory

Zipinputfile Name of the zip file (without .zip)

zipinputfiledir Zip File Dir

Extractdir Output Dir

Preservetree True if you want to preserve the original dir struct

errorVariable Name of the error variable to be set in case of error

errorValue Value of the error Variable in case of error

 5.11 ZipActivity

This activity zips a list of files

 <ExtendedAttribute Name="ZipDir" Value="<zipDir>"/>

 <ExtendedAttribute Name="ZipFileOutDir" Value="<zipfileoutdir>"/>

 <ExtendedAttribute Name="ZipFileName" Value="<zipfilename>"/>

 <ExtendedAttribute Name="Extension" Value="<extension>"/>

 <ExtendedAttribute Name="errorVariable" Value="<errorVariable>"/>

 <ExtendedAttribute Name="errorValue" Value="<errorValue>"/>

 Var Description Mandatory

ZipfileName Name of the zip file (without .zip)

Zipfileoutdir Zip File Dir

ZipDir Directory where the files to be compressed are

Extension Extensions of the files to be compressed (many extensions can be inserted)

errorVariable Name of the error variable to be set in case of error

errorValue Value of the error Variable in case of error

 6 Triggers

JawFlow has an internal mechanism to trigger process instances start when particula events occur. A bunch of triggers are predefined to

cover the most common situations.

 6.1 TriggerManager

The TriggerManager is the component of the jawFlow architecture responsible for keeping track of all triggers installed in the system and for

the effective process spawning,

The TriggerManager can be configured to "listen" on a directory for trigger configuration files. Basically you can install a trigger by copying a

configuration file in a given directory and the TriggerManager watch over the directory for any modifications or removal of the file.

 6.2 MailTrigger

The MailTrigger monitors an email address and if a mail is received respecting defined rules it starts a given process instance.

 <trigger>

 <name>MailTrigger</name>

 <version>1</version>

 <class>net.arsretia.jawflow.triggers.mail.MailTrigger</class>

 <processid>

 <rule regexp="Process1*" field="Subject">Process1</rule>

 <rule regexp="Process2*" field="Subject">Process2</rule>

 ...

 </processid>

 <period>5000</period>

 <domain name="domain">

 <var name="var1" value="value1"/>

 <var name="var2" value="value2"/>

 ...

 </domain>

 <host>[mail host]</host>

 <user>[mail username]</user>

 <password>[mail password]</password>

 <protocol>[mail protocol]</protocol>

 <port>[mail host port]</port>

 <maxmessages>1</maxmessages>

 <attachmentdir>[mail attachments dir]</attachmentdir>

12 of 13

 <debug>false</debug>

 </trigger>

The processid section includes a list of rules to start different process id if defined rules are met. The "field" attribute can be one of the valid

Mail Header file names (e.g.: Subject). The "regexp" attribute is a regexp which is evaluated on the content of the field's value. If the rule is

met the processid in the related tag is started. In the above example if the subject starts with "Process1" than a new process instance of th

Process1 definition is started.

The other configuration parameters are:

 Param Description Mandatory

 period Period of the check in ms

 domain
In this section you can add variables to the process instance which is started and you can configure the default

domain

 host Mail Server

 user Mail User

 password Mail Password

 protocol Mail Protocol (supported by javamail)

 port Mail Port

 maxmessages Max number of messages to be retrieved each run

 attachmentdir Directory in which attachment files will be stored

 debug true to debug javamail

The started process has the following attributes set:

 Param Description Type

 mail.messagecontents if message has no attachments it contains message content java.lang.String

 mail.contents a List of attachment file names java.util.List

 mail.recbcc a List of BCC addresses java.util.List

 mail.reccc a List of CC addresses java.util.List

 mail.from a List of FROM addresses java.util.List

 mail.recto a List of TO addresses java.util.List

 mail.replyto a List of REPLYTO addresses java.util.List

 mail.received date of receival java.lang.String

 mail.sent date of sending java.lang.String

 mail.attachmentdir Attachment Dir java.lang.String

 mail.header.headername Value of header headername java.lang.String

 6.3 FileTrigger

The FileTrigger monitors a directory tree on the filesystem and if a file is copied/modified it starts a given process instance.

 <trigger>

 <name>nesteddir</name>

 <version>1</version>

 <class>net.arsretia.jawflow.triggers.file.FileTrigger</class>

 <processid>Test</processid>

 <period>1000</period>

 <rootdir>[rootdir]</rootdir>

 <domain>var1_$var1name1</domain>

 <dir path="dir1" filefilter="*.txt">

 <var name="var1name1" value="var1value1"/>

 <var name="var1name2" value="var1value2"/>

 <var name="var1name3" value="var1value3"/>

 <dir path="dir1.1" filefilter="*.txt1">

 <var name="var1.1name1" value="var1.1value1"/>

 <var name="var1.1name2" value="var1.1value2"/>

 </dir>

 <dir path="dir1.2" filefilter="*.zip">

 <var name="var1.2name1" value="var1.2value1"/>

 <var name="var1.2name2" value="var1.2value2"/>

 <dir path="dir1.2.1" filefilter="*.doc">

 <var name="var1.2.1name1" value="var1.2.1value1"/>

 <var name="var1.2.1name2" value="var1.2.1value2"/>

 </dir>

 </dir>

 </dir>

 </trigger>

In the above example we are monitoring a tree with the following structure:

 [rootdir]

 |

 |----dir1

 |

 |----dir1.1

 |

 |----dir1.2

 |

 |---dir1.2.1

13 of 13

The "filefilter" attribute ensures that only the filtered file are checked, so, for instance, in directory dir1, only .txt files are checked. The started

process has the following attributes set:

 Param Description Type

 var
The started process will have this variables as attributes if the file is modified in the

corresponding directory
java.lang.String

 FileNotificationTimeStamp Time of notification User java.lang.String

 InputFileDir directory of modified file java.lang.String

 FileLength File Lenght java.lang.Long

 LastModified Last Modified Time java.lang.String

 InputFile File name without extension java.lang.String

 InputFileSuffix File Suffix java.lang.String

 6.4 FTPTrigger

The FTPTrigger monitors a file on a remote server and starts a given process instance.

 <trigger>

 <name>FTPTrigger</name>

 <version>1</version>

 <class>net.arsretia.jawflow.triggers.ftp.FTPTrigger</class>

 <processid>Test</processid>

 <period>5000</period>

 <domain name="domain">

 <var name="var1" value="value1"/>

 <var name="var2" value="value12"/>

 </domain>

 <host>[host]</host>

 <user>[username]</user>

 <password>[password]</password>

 <remotedir>[dir]</remotedir>

 <remotefile>[file]</remotefile>

 <localdir>[localdir]</localdir>

 <mode>[ftp mode]</mode>

 <downloadfile>true</downloadfile>

 <deleteremote>true</deleteremote>

 </trigger>

The other configuration parameters are:

 Param Description Mandatory

 period Period of the check in ms

 domain
In this section you can add variables to the process instance which is started and you can configure the default

domain

 host FTP Host

 user Username

 password Password

 remotedir Dir on remote server

 remotefile File on remote server

 localdir Local dir where file will be written if downloadfile=true

 mode FTP Mode

 downloadfile true if file must be downloaded

 deleteremote true if file must be deleted after downloading

 6.5 Timerigger

The TimeTrigger acts as a unix crontab starting a process with a scheduler.

 <trigger>

 <name>Time</name>

 <version>1</version>

 <class>net.arsretia.jawflow.triggers.time.TimeTrigger</class>

 <processid>Test</processid>

 <period>1000</period>

 <rootdir>[rootdir]</rootdir>

 <domain>var1_$var1name1</domain>

 <crontabentry>[min] [hour] [day of month] [month] [day of week]</crontabentry>

 <crontabentry>[min] [hour] [day of month] [month] [day of week]</crontabentry>

 </trigger>

The crontab entry is in the standard unix crontab form (it supports only the wildcard "*")

